Daniel Kopinke, Ph.D.
Associate Professor
Teaching Profile
Research Profile
Visit website for more detail @ www.kopinkelab.com
In many tissues, wound healing and regeneration depends on stem cells to replace the lost or damaged cells. In injured skeletal muscle, a dedicated muscle stem cell population gives rise to new muscle myofibers after an acute injury. In chronic diseases, however, muscle regeneration fails and healthy muscle is gradually replaced with fibrotic scar and fat tissue, a process called fatty fibrosis. This fatty fibrosis of muscle is a prominent feature of chronic muscle diseases such as Duchenne muscular dystrophy (DMD), sarcopenia (age-related loss of skeletal muscle and strength), obesity and diabetes. There are no cures for DMD and no specific therapies for either DMD or sarcopenia.
Coordinating cell-cell interactions is critical for regenerating complex tissues after injury or disease. Primary cilia are small, immotile, microtubule-based cell projections and have evolved to receive and interpret extracellular cues. Cilia play a crucial role in intercellular communication during development and defects in cilia lead to embryonic lethality in both mice and humans. While cilia are present on the majority of cells in our body, there’s little known about how they function or participate in the repair of adult tissues.
It was recently discovered that cilia coordinate muscle repair by controlling the communication between the muscle stem cell population and its support cells. The Kopinke Lab is now building on this work by investigating how ciliary signaling coordinates cellular communication between stem cells and their niche, to understand how cilia-based communication goes awry in disease and to identify novel pharmacological tools to combat cilia-associated diseases such as fatty fibrosis.
- Drug discovery
- Primary Cilia and Cilopathies
- Regenerative and Precision Therapeutics
- Stem Cell biology
- Tissue engineering related to wound healing
Publications
Grants
Contact Details
- Business:
- (352) 294-5355
- Business:
- dkopinke@ufl.edu
- Business Mailing:
-
PO Box 100267
GAINESVILLE FL 32610 - Business Street:
-
1200 NEWELL DR
GAINESVILLE FL 32610